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Abstract
We describe an approach for investigating the Hamiltonian structures of the
lattice isospectral evolution equations associated with a general discrete spectral
problem. By using the so-called implicit representations of the isospectral
flows, we demonstrate the existence of the recursion operator L, which is a
strong and hereditary symmetry of the flows. It is then proven that every
equation in the isospectral hierarchy possesses the Hamiltonian structure if
L has a skew-symmetric factorization and the first equation (ut = K(0)) in
the hierarchy satisfies some simple condition. We obtain related properties,
such as the implectic-symplectic factorization of L, the Liouville complete
integrability and the multi-Hamiltonian structures of the isospectral hierarchy.
Four examples are given.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

It is well known that an integrable soliton system possesses a remarkably rich algebraic
character, i.e. infinitely many symmetries and conserved quantities, the existence of a multi-
Hamiltonian formulation, etc [1]. In terms of the Hamiltonian structure, in 1986 Tu [2]
proposed a successful method (the developed version has been given in [3] and [4]) for
finding isospectral evolution equations and their Hamiltonian structures from the eigenvalue
problem. The essence of Tu’s method was a trace identity derived by the use of the chain rule of
variational derivatives. Using this trace identity, the functional gradient can be obtained simply
[5–8]. Another classical approach to constructing the Hamiltonian structures of integrable
systems has been developed by Fokas and co-workers [1, 9, 10]. In this method, a certain
operator L, called the recursion operator, plays a central role. Actually, the operator should
first be a strong and hereditary symmetry for the isospectral evolution equations derived from
the eigenvalue problem, and, further, it can be factorized in terms of the two Hamiltonian
operators. Then the Hamiltonian structure can be established by using the properties of the
operator and evolution equations. However, not all the recursion operators are hereditary [11].
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So, we need a simple approach, especially for a discrete system, to obtain this important
property of the recursion operator, but without being involved in a long and tedious verification
as previously [12, 13].

In this paper, we investigate a general discrete hierarchy by using the implicit
representation theory, proposed by Chen and Zhang [14, 15], by which the evolution equations,
the symmetries of isospectral equations and their algebraic structures can be constructed from
the concerned eigenvalue problem in a simple way. First, in the light of the theory, we
obtain the evolution equation hierarchy and the related recursion operator L, which is a strong
and hereditary symmetry of the whole hierarchy, from the following general discrete linear
problem pair

Eφ = Mφ = M(λ, u(t, n))φ φt = Nφ = N(λ, u(t, n))φ (1)

where E is a shift operator defined in section 2. Then, on the basis of the results of Fokas
and co-workers [1, 9, 10] we prove that every equation in the hierarchy has the Hamiltonian
structure if L possesses a skew-symmetric factorization and the first equation (ut = K(0)) in
the hierarchy satisfies some simple condition. In addition, we obtain some related properties,
such as the implectic-symplectic factorization of L, the Liouville integrability and the multi-
Hamiltonian structures of the evolution equations. As applications, we discuss the Toda lattice,
the three-field Blaszak–Marciniak (B–M) lattice, the Ablowitz–Ladik lattice and a new lattice
(which we call the B–M(II) lattice).

Although the object which we investigate is a general discrete system, the method in this
paper can obviously be applied to the continuous case as well.

The paper is organized as follows. In section 2 we recollect some basic notions for
discrete soliton systems. In section 3, using the implicit representation theory, we obtain the
isospectral evolution equation hierarchy, the related recursion operator L and the property of
L, which is a strong and hereditary symmetry. In section 4 the Hamiltonian structures for
discrete evolution equations are established and the related properties are given. Finally, in
section 5 we give four examples.

2. Basic notions

We assume that Us = {u(t, n) = (u1, u2, . . . , us)
T } is an s-dimensional vector field

space, where ui = ui(t, n), 1 � i � s are all real functions defined over R × Z, and
vanish rapidly as |n| → ∞. Let V l denote a linear space containing all vector fields
f = (f1, f2, . . . , fl)

T living on Us . Here fi = fi(u(t, n)), 1 � i � l, are C∞ differentiable
with respect to t and n,C∞ Gateaux differentiable with respect to u, and fi |u=0 = 0. Then,
let Qm(λ) denote a Laurent matrix polynomial space composed by all m × m matrices
Q = Q(λ, u(t, n)) = (qij (λ, u(t, n)))m×m, where qij (or Q) are all the Laurent (matrix)
polynomials of λ. We also introduce two subspaces Q(l+)

m (λ) and Q(l−)
m (λ) described

respectively by

Q(l+)
m (λ) = {Q ∈ Qm(λ) | the lowest degree of Q � l}

and

Q(l−)
m (λ) = {Q ∈ Qm(λ) | the highest degree of Q � l}.

Now we define the shift operator E as

Ef (n) = f (n + 1) E−1f (n) = f (n − 1) n ∈ Z
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and the difference operator � = E−E−1. Sometimes, without confusion and for convenience,
we write f (n) = f = fn,E

kf (n) = f (n + k) = fn+k, k ∈ Z. We also define the inverse
operator of � as

�−1fn = −
∞∑

k=0

fn+2k+1 or �−1fn =
0∑

k=−∞
fn+2k−1

where we please fn sufficiently near to zero as |n| → ∞.
In what follows, we recall many necessary definitions and basic notions for the discrete

systems.

Definition 1. The Gateaux derivative of f ∈ Vs (f is an operator on Vs ) in the direction
g ∈ Vs is defined by

f ′[g] = d

dε

∣∣∣∣
ε=0

f (u + εg). (2)

For example, if f = f (u(t, n)) ∈ Vs , then

f ′ =
∑

j

∂f

∂(Eju)
Ej .

Using the Gateaux derivative, the Lie product for any f, g ∈ Vs can be described as

[[f, g]] = f ′[g] − g′[f ]. (3)

Definition 2. For a given discrete evolution equation

ut = K(u(t, n)), (4)

σ(u(t, n)) ∈ Vs is called its symmetry if σt = K ′[σ ]. All the symmetries of equation (4) form a
linear space S, whose adjoint S∗ = {γ (u(t, n)) | − γt = K ′∗γ } denotes a conserved covariant
space.

We note that, throughout this paper, we always assume that the symmetries, conserved
covariants and operators which we investigate do not contain t explicitly.

Definition 3. Suppose that L and � are operators on Vs . L is called the strong symmetry of
equation (4) if L : S �→ S∗, i.e.

L′[K] − [K ′, L] = 0. (5)

If L satisfies

L′[Lf ]g − L′[Lg]f = L(L′[f ]g − L′[g]f ) ∀f, g ∈ Vs (6)

then L is called hereditary or a hereditary symmetry [16], meaning that if L is a strong symmetry
for ut = K,L is also a strong symmetry for ut = LK , as for ut = LlK, (l = 2, 3, . . .).
Furthermore, it is obvious that if L is a strong symmetry for equation (4), then there must
exist L∗ : S∗ �→ S∗. Also, if L is hereditary for symmetry, then L∗ is also hereditary for
the conserved covariant. The operator � is called a Noether operator for equation (4), if
� : S∗ �→ S, i.e.

�′[K] = �K ′∗ + K ′�. (7)

Definition 4. Let J (u) and θ(u) be two skew-symmetric operators on Vs . Then J (u) is
symplectic if

(f, J ′[g]h) + (g, J ′[h]f ) + (h, J ′[f ]g) = 0 ∀f, g, h ∈ Vs (8)
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and θ(u) is inverse-symplectic (implectic for short [19]) if

(f, θ ′[θg]h) + (g, θ ′[θh]f ) + (h, θ ′[θf ]g) = 0 ∀f, g, h ∈ Vs . (9)

Here, the inner product (·, ·) is defined by (f, g) = ∑∞
n=−∞ f T

n gn, f, g ∈ Vs .

Definition 5. Consider a real-value functional H = H(u(t, n)) defined over Us . If, for
every h(u(t, n)) ∈ Vs , there is f (u(t, n)) ∈ Vs , such that H ′[h] = (f, h), then we say that
f (u(t, n)) is a functional derivative or gradient of H(u(t, n)), denoted by

f (u(t, n)) = δH

δu
= ∇H = grad H.

Hence, the Poisson bracket of two functionals W = W(u(t, n)) and H = H(u(t, n)), both
defined over Us , is described as

〈W,H 〉 =
(

δW

δu
, θ

δH

δu

)
in which θ is an implectic operator because of the Jacobi identity of 〈·, ·〉.

Finally, in this section, we describe the Hamiltonian structure of the discrete nonlinear
evolution equation (4).

Definition 6. Equation (4) is said to be a Hamiltonian system if it can be written in the form

ut = θ(u)f (u) = θ(u)
δH

δu
(10)

where θ is implectic and f is the gradient of H.

3. Implicit representations of isospectral flows {K (l)} and property of recursion
operator L

In this section, we introduce the implicit representations [14, 15] of isospectral flows {K(l)}.
We construct the recursion operator L and we prove that L is a strong and hereditary symmetry
of the flows.

Consider the general discrete linear problem (1). The corresponding integrability
condition, the discrete zero curvature equation, is

Mt = (EN)M − MN. (11)

Generally, from this, the discrete evolution equation hierarchy can be obtained

unt = K(l)(u(t, n)) = LlK(0)(u(t, n)) l = 0, 1, . . . (12)

where L is a recursion operator and {K(l)} are isospectral flows. Of course, the spectral matrix
M is the same for all flows of the hierarchy whereas the time matrix N differs from flow to
flow. Here and below, we let N(l) denote N which leads to the flow K(l). Then, if we note that
Mt = M ′[unt ], we can further find from equation (11) that

M ′[K(l)] = (EN(l))M − MN(l) l = 0, 1, 2, . . . . (13)

These equations are called the implicit representations of isospectral equations (12) (or the
flows {K(l)}).
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Theorem 1. Suppose that the linear problem (1) satisfies the following conditions:

(1) the matrix equation

M ′[X] = (EN)M − MN (14)

possesses a unique couple of non-zero solutions X(u(t, n)) ∈ Vs and N(λ, u(t, n)) ∈
Qm(λ) satisfying N |u=0 = N0, where N0 is a matrix independent of u and meeting
M|u=0N0 = N0M|u=0;

(2) for any given Y (u(t, n)) �= 0 ∈ Vs , there exist solutions X(u(t, n)) ∈ Vs and
N(λ, u(t, n)) ∈ Qm(λ) satisfying

M ′[X − λαY ] = (EN)M − MN N |u=0 = 0 (15)

where α is a constant related to problem (1). Then the following results are right:

(1) there must exist the implicit representations (13) for isospectral flows {K(l)};
(2) there exists the unique recursion operator L such that

unt = K(l)(u(t, n)) = LlK(0)(u(t, n)) l = 0, 1, . . . (16)

and L must be a strong and hereditary symmetry of equation (16).

Proof. The first flow K(0)(u(t, n)) can be found as a solution of equation (14), i.e.

M ′[K(0)] = (EN(0))M − MN(0) K(0) ∈ Vs N(0) ∈ Qm(λ). (17)

Then the second flow K(1)(u(t, n)) appears from

M ′[K(1) − λαK(0)] = (EU(1))M − MU(1) U(1)|u=0 = 0 ∈ Qm(λ) (18)

and so do other flows {K(l)}, (l = 2, 3, . . .). Then, it can easily be shown that

M ′[K(l)] = (EN(l))M − MN(l) N(l) =
l∑

j=0

U(j)λα(l−j) ∈ Qm(λ) U(0) = N(0).

(19)

The conditions of the theorem suggest that for any Y �= 0 ∈ Vs there exists a unique
mapping L : Vs �−→ Vs such that X = LY . Obviously, L is just the recursion operator for the
evolution equation hierarchy {K(l)} related to the linear problem pair (1). In addition, we can

also find that for any Y �= 0 ∈ Vs there exists N
(k)

(λ, u(t, n)) ∈ Qm(λ) meeting

M ′[LkY − λαkY ] = (EN
(k)

)M − MN
(k)

N
(k)|u=0 = 0 (k = 1, 2, . . .). (20)

Next, with the help of the equality

L′[[[f, g]]] = (L′[f ])′[g] − (L′[g])′[f ]

equation (17) coupled with equation (20) (taking k = 1) yields

M ′[[[LY − λαY,K(0)]]] = (EÑ)M − MÑ Ñ |u=0 = 0 (21)

where

Ñ = N
(1)′

[K(0)] − N(0)′[LY − λαY ] + [N
(1)

, N(0)].

Then, noticing that

[[LY − λαY,K(0)]] = (L′[K(0)] − [K(0)′, L])Y + L[[Y,K(0)]] − λα[[Y,K(0)]]

we can find that

M ′[(L′[K(0)] − [K(0)′, L])Y ] = (EU)M − MU U |u=0 = 0 (22)
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where U = Ñ − N̂ , and N̂ is a solution of equation (20) (taking k = 1) as Y is replaced by
[[Y,K(0)]]. The above equation suggests

(L′[K(0)] − [K(0)′, L])Y = 0 (23)

which means L is a strong symmetry of the equation unt = K(0).
In the following, for any Y,Z ∈ Vs we have

M ′[L′[LZ]Y − L′[LY ]Z − L(L′[Z]Y − L′[Y ]Z)] = (EQ)M − MQ Q|u=0 = 0

Q = N
(1)′

[LZ − λαZ] − R′[LY − λαY ] + [N
(1)

, R] − V − W

where R and V are the solutions of equation (20) (taking k = 1) as Y is replaced by Z and
[[Y,LZ]] − [[Z,LY ]] respectively, and W is a solution of equation (20) when k = 2 and Y is
substituted by [[Z, Y ]]. It then turns out that

L′[LZ]Y − L′[LY ]Z − L(L′[Z]Y − L′[Y ]Z) = 0 ∀Y,Z ∈ Vs (24)

namely, L is a hereditary symmetry. Thus we complete the proof. �

We note that the theorem is also right if we replace Qm(λ) by its subspace, and the
condition (1) of this theorem can be replaced equivalently by the following. Equation (14)
possesses a couple of non-zero solutions and further only admits zero solutions in Vs and
Qm(λ) as N |u=0 = 0.

Corollary. All the flows {K(k)} are symmetries of every equation in the hierarchy (16) and
satisfying

[[K(l),K(k)]] = 0 l, k = 0, 1, . . . . (25)

4. Hamiltonian structure and Liouville integrability

In this section we wish to investigate the Hamiltonian properties of the whole discrete hierarchy
(16).

Theorem 2. Suppose that L is a strong and hereditary symmetry for every equation in the
hierarchy (16). There are two skew-symmetric operators θ(u) and J (u) on Vs such that

L = θJ. (26)

The first equation unt = K(0) in equation (16) can be written in the form

unt = θf (0)(u(t, n)) = θ
δH (0)

δu
H (0) =

∫ 1

0
(f (0)(ρu), u) dρ. (27)

Then every equation in (16) is a Hamiltonian system

unt = K(l)(u(t, n)) = θf (l)(u(t, n)) = θ
δH (l)

δu
= θL∗l

f (0)(u(t, n)) l = 0, 1, . . .

(28)

where

H(l) =
∫ 1

0
(f (l)(ρu), u) dρ. (29)
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Now, let us prove this theorem through the following six lemmas.

Lemma 1. f (u(t, n)) ∈ Vs is a gradient of some real-value functional H if and only if
f ′ = f ′∗ [9]. Here the potential H is given by

H =
∫ 1

0
(f (ρu), u) dρ. (30)

Lemma 2. If f = δH/δu and H is a conserved quantity of equation (4) then f is a conserved
covariant of equation (4) [9].

Lemma 3. Under the conditions of theorem 2, H(0) in equation (27) is a conserved quantity
of the whole hierarchy (16).

Proof. The equation unt = K(l) in the hierarchy (16) can be written as

unt = θL∗l
f (0)(u(t, n)) = θf (l)(u(t, n)) (L∗ = J θ). (31)

Then the lemma holds because of
dH(0)

dt
= H(0)′[unt ] = (f (0), K(l)) = (f (0), θL∗l

f (0)) = −(θf (0), L∗l
f (0))

= −(Llθf (0), f (0)) = −(LlK(0), f (0)) = −(K(l), f (0)) = 0. �

Lemma 4. If L is a strong and hereditary symmetry for equation (16), f = δH/δu and H is
a conserved quantity of the whole hierarchy (16), then f (m) = L∗mf, (m = 0, 1, . . .) are all
gradients [10].

Lemma 5. Under the conditions of theorem 2, θ is a Noether operator for every equation in
the hierarchy (16).

Proof. It is not difficult to find that K(m) and L∗mf (0) are respectively the symmetry and
conserved covariant of every equation in (16). So, because of

K(m) = θL∗m
f (0) m = 0, 1, . . .

it appears reasonable to conclude that θ is a Noether operator for the whole hierarchy (16).
�

Lemma 6. [9] Under the conditions of theorem 2, if θ is a Noether operator for the whole
hierarchy (16), and all {f (m)} are gradients, then θ is implectic.

The above six lemmas suggest that theorem 2 holds.

Theorem 3. Under the assumptions of theorem 2, the equations in the hierarchy (16) are all
integrable in the Liouville sense.

Proof. The skew-symmetric factorization (26) implies Lθ = θL∗, by which it can be verified
that

〈H(m),H (n)〉 = (f (m), θf (n)) = (L∗m
f (0), θL∗n

f (0)) = (f (0), LmθL∗n
f (0))

= (f (0), θL∗m+n
f (0)) = −(θL∗m+n

f (0), f (0)) = 0 m,n = 0, 1, 2, . . .

namely, H(m) and H(n) are involutive. With this in mind, for any equation (31) in (16), we
have

dH(m)

dt
= H(m)′[unt ] =

(
δH (m)

δu
,K(l)

)
=
(

δH (m)

δu
, θ

δH (l)

δu

)
= 〈H(m),H (l)〉 = 0 m = 0, 1, 2, . . . .

Now the theorem holds. �
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Theorem 4. Under the assumptions of theorem 2, equation (31) in the hierarchy (16) possesses
multi-Hamiltonian [9, 17] structures:

unt = θ
δH (l)

δu
= θL∗ δH (l−1)

δu
= · · · = θL∗k δH (l−k)

δu
= · · · = θL∗l δH

(0)

δu
(0 � k � l).

(32)

Proof. We only need to show that θL∗k is implectic. In fact, θ is a Noether operator of every
member in equation (16). Meanwhile L∗ : S∗ �→ S∗, so θL∗k is also a Noether operator for
the whole hierarchy (16), and furthermore it is implectic in the light of lemma 6. �

Theorem 5. Under the assumptions of theorem 2, J must be a symplectic operator, i.e.
equation (26) is an implectic-symplectic factorization.

Proof. Theorem 2 shows that θ is a Noether operator for the hierarchy (16), so it is easy to
see that J is an inverse Noether operator of equation (31), which suggests

(θh, (J ′[K(l)] + K(l)′∗J + JK(l)′)θg) = 0 ∀g, h ∈ Vs .

Then, noticing that θ is implectic, one can find that

(g, (θ ′[LK(l)] − θ(LK(l))′
∗ − (LK(l))′θ)h) = (K(l), J ′[θg]θh)

+ (θg, J ′[θh]K(l)) + (θh, J ′[K(l)]θg) l = 0, 1, . . . .

This completes the proof. �

5. Applications

In this section, we study four discrete soliton systems and construct their Hamiltonian
structures. These four examples, as the representatives of various lattice hierarchies, show that
the conditions of theorem 1, so easy, can be met naturally in the process of deriving isospectral
hierarchy from the concerned zero curvature equation. The first example is the Toda lattice
[18] which often serves as a useful guide in studies on nonlinear waves.

5.1. Toda Lattice

In this case, the linear problem pair (1) is [19–21]

Eφ = Mφ M =
(

0 1
−pn λ − vn

)
un =

(
ln pn

vn

)
φ =

(
φ1

φ2

)
φt = Nφ N =

(
An Bn

Cn Dn

)
.

(33)

Now we consider the matrix equation

M ′[X − λY ] = (EN)M − MN (34)

where X = X(u(t, n)) = (X1,X2)
T and Y = Y (u(t, n)) = (Y1, Y2)

T . This suggests that

An = −qnBn+1 Cn = −(λ − vn−1)Bn + Dn−1 (35)

and

X = λY + (L1 − λL2)

(
Dn

Bn

)
(36)
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in which

L1 =
(

� (E − 1)vn−1

vn(E − 1) EqnE − qn

)
L2 =

(
0 E − 1

E − 1 0

)
. (37)

In the case of Y = 0, taking (Dn,Bn)
T = (0, 1)T , we can find the non-zero solutions

X = K(0)(u(t, n)) =
(

vn − vn−1

pn+1 − pn

)
∈ V2 (38)

and

N = N(0)(λ, u(t, n)) =
(−λ + vn−1 1

−pn 0

)
∈ Q(0+)

2 (λ) (39)

satisfying the matrix equation

M ′[X] = (EN)M − MN. (40)

On the other hand, we consider the case of Y �= 0. Setting (Dn,Bn)
T to be independent of λ

in equation (36), we have(
Dn

Bn

)
= L−1

2 Y X = LY (41)

where L is just the recursion operator described by

L = L1L
−1
2 =

(
(E − 1)vn−1(E − 1)−1 1 + E−1

(EpnE − pn)(E − 1)−1 vn

)
. (42)

Then it is easy to find the solutions X ∈ V2 and N ∈ Q(0+)
2 (λ) satisfying N |u=0 = 0. In

addition, if we set Y = 0 in equation (36) and expand (Dn,Bn)
T in the following form(

Dn

Bn

)
=

k∑
j=0

(
d

(j)
n

b
(j)
n

)
λk−j

it is not difficult to find that equation (40) only admits zero solutions in V2 and Q(0+)

2 (λ) if
N |u=0 = 0. Thus according to theorem 1, the isospectral hierarchy of the Toda lattice is

unt = K(l)(u(t, n)) = LlK(0)(u(t, n)) l = 0, 1, . . . (43)

and the recursion operator L is a strong and hereditary symmetry for the whole hierarchy (43).
Next, we factorize the recursion operator L into

L = θJ (44)

where

θ =
(

0 1 − E−1

E − 1 0

)
(45)

and

J =
(

(E − 1)−1(Epn − pnE
−1)(1 − E−1)−1 (E − 1)−1vn

−vn(E
−1 − 1)−1 (E − 1)−1(E + 1)

)
(46)

are both skew-symmetric. This factorization allows us to rewrite the hierarchy (43) in the
following form:

unt = θf (l)(u(t, n)) = θL∗l
f (0)(u(t, n)) f (0) = (pn, vn)

T l = 0, 1, . . . . (47)

It is easy to check

f (0)′ = f (0)′∗ =
(

pn 0
0 1

)
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which means the first equation unt = K(0) can be written as

unt = θf (0)(u(t, n)) = θ
δH (0)

δu
H (0) =

∫ 1

0
(f (0)(ρu), u) dρ.

So, according to the results in section 4, equation (44) is an implectic-symplectic factorization,
the hierarchy (43) is a complete Liouville integrable and the Hamiltonian structures are

unt = θ
δH (l)

δu
= θL∗ δH (l−1)

δu
= · · · = θL∗l δH

(0)

δu
= θL∗l

f (0)(u(t, n)) l = 0, 1, . . .

(48)

where the conserved quantities H(l) are obtained from equation (29). The first two conserved
quantities H(0)(u(t, n)) and H(1)(u(t, n)) are respectively

H(0)(u(t, n)) =
∫ 1

0
(f (0)(ρu), u) dρ =

∫ 1

0

((
eρ ln pn

ρvn

)
,

(
ln pn

vn

))
dρ

=
∑+∞

n=−∞

(
pn +

1

2
v2

n − 1

)
and

H(1)(u(t, n)) =
∫ 1

0
(f (1)(ρu), u) dρ =

+∞∑
n=−∞

[
pn(vn + vn−1) +

1

3
v3

n − 1

]
.

5.2. Blaszak–Marciniak lattice

Our second example is the three-field Blaszak–Marciniak (B–M) lattice [6, 20, 21] or the
sub-KP lattice [21], whose Lax pair is

Eφ = Mφ M =
 0 1 0

pn − λ qn 1
rn 0 0

 un =
 qn

ln rn

pn

 φ =
φ1

φ2

φ3


φt = Nφ N =

An Bn Cn

Dn En Fn

Gn Hn In

 .

(49)

From the matrix equation

M ′[X − λY ] = (EN)M − MN (50)

where X = X(u(t, n)) = (X1,X2,X3)
T and Y = Y (u(t, n)) = (Y1, Y2, Y3)

T , we have
An = −qnBn + En−1 Dn = pnBn+1 + rnCn+1 − λBn+1

Fn = Bn+1 Gn = rn−1Bn−1 − qn−1rn−1Cn−1

Hn = rn−1Cn−1 In = −qnBn+1 − pnCn + En+1 + λCn

and

X = λY + (L1 − λL2)

Bn

Cn

En


in which

L1 =
 EpnE − pn ErnE − E−1rn qn(E − 1)

−EqnE + qn−1 (1 − E)pn E2 − E−1

rnE
2 − E−1rn − pn(E − 1)qn−1 E−1qnrn − qnrnE pn�


L2 =

 �E 0 0
0 1 − E 0

(1 − E)qn 0 �

 .
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Then, just like the treatment of the Toda lattice, we can find that the B–M lattice satisfies
the conditions of theorem 1. The first equation is

unt = K(0) =
 rn+1 − rn−1

pn − pn+1

qn−1rn−1 − qnrn

 (51)

and the related time matrix is

N(0) =
 0 0 1

rn 0 0
−qn−1rn−1 rn−1 λ − pn

 .

The isospectral hierarchy is

unt = K(l)(u(t, n)) = LlK(0)(u(t, n)) l = 0, 1, . . . (52)

where the recursion operator, strong and hereditary symmetry for equation (52), L = L1L
−1
2 =

(Lij )3×3 reads as

L11 = (Epn − pnE
−1 + qn�−�−1

+ qn)�
−1 L12 = (E−1rn − ErnE)�−1

−
L13 = qn(1 + E−1)−1 L21 = −�−�−1

+ qn�
−1

L22 = �−pn�
−1
− L23 = (E2 − E−1)�−1

L31 = (rnE − E−1rnE
−1)�−1 L32 = (qnrnE − E−1qnrn)�

−1
−

L33 = pn

(53)

where �− = E − 1 and �+ = E + 1.
Next, L can be written in the following form

L = θJ (54)

in which θ and J = (Jij )3×3 are both skew-symmetric, described respectively by

θ =
� 0 0

0 0 1 − E

0 E−1 − 1 0

 (55)

and

J11 = �−1[Epn − pnE
−1 + qn(1 + E−1)−1��−1

+ qn]�−1

J12 = �−1(E−1rn − ErnE)�−1
− J13 = �−1qn(1 + E−1)−1

J21 = (1 − E−1)−1(E−1rnE
−1 − rnE)�−1

J22 = (1 − E−1)−1(E−1qnrn − qnrnE)�−1
−

J23 = −(1 − E−1)−1pn J31 = �+
−1qn�

−1

J32 = −pn�
−1
− J33 = �−1(E2 − E−2 + �)�−1.

(56)

Now we rewrite the first equation (51) as

unt = θf (0)(u(t, n)) f (0) = (rn, qnrn, pn)
T

and it is easy to verify that f (0)′ = f (0)′∗. So, according to theorem 2, equation (54) is an
implectic-symplectic factorization, the hierarchy (52) is a complete Liouville integrable and
the Hamiltonian structures are

unt = θ
δH (l)

δu
= θL∗ δH (l−1)

δu
= · · · = θL∗l δH

(0)

δu
= θL∗l

f (0)(u(t, n)) l = 0, 1, . . .

(57)
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where the conserved quantities H(l) are obtained from equation (29). The first two of these
are

H(0)(u(t, n)) =
+∞∑

n=−∞

(
qnrn +

1

2
p2

n

)

H(1)(u(t, n)) =
+∞∑

n=−∞

[
1

3
p3

n + qnrn(pn + pn+1) − rnrn−1 + 1

]
.

5.3. Ablowitz–Ladik lattice

The linear problem pair in which we are interested, related to the Ablowitz–Ladik (A–L)
lattice [5, 22–25], reads

Eφ = Mφ M =
(

λ Qn

Rn
1
λ

)
un =

(
Qn

Rn

)
φ =

(
φ1

φ2

)
φt = Nφ N =

(
An Bn

Cn Dn

)
.

(58)

Now, we consider the matrix equation

M ′[X − λαY ] = (EN)M − MN (59)

where X = X(u(t, n)) = (X1,X2)
T and Y = Y (u(t, n)) = (Y1, Y2)

T . This leads to

An = 1

λ
(E − 1)−1(−RnEBn + QnCn) + a0

Dn = λ(E − 1)−1(RnBn − QnECn) + d0

(60)

and

X = λαY +

(
λL1 − 1

λ
L2

)(
Bn

Cn

)
+ (a0 − d0)

(
Qn

−Rn

)
(61)

where a0 = An|u=0 and d0 = Dn|u=0 are all constants independent of u, and

L1 =
(−1 0

0 E

)
+

(−Qn

RnE

)
(E − 1)−1(Rn,−QnE) (62)

L2 =
(−E 0

0 1

)
−
(−QnE

Rn

)
(E − 1)−1(RnE,−Qn). (63)

Moreover, we present the inverse operators of L1 and L2

L−1
1 =

(−1 0
0 E−1

)
+

(
Qn

Rn−1

)
(E − 1)−1(Rn,Qn)

1

µn

(64)

L−1
2 =

(−E−1 0
0 1

)
−
(

Qn−1

Rn

)
(E − 1)−1(Rn,Qn)

1

µn

(65)

in which µn = 1 − QnRn.
If we set Y = 0, a0 = −d0 = 1

2λ−2 and (Bn, Cn)
T = −λ−1(Qn−1, Rn)

T in equation (61),

we can find the non-zero solutions in V2 and Q(0−)

2 (λ)

X = K̂
(0)

(u(t, n)) = µn

(
Qn−1

−Rn+1

)
N = N̂(0)(λ, u(t, n)) =

( 1
2λ−2 −Qn−1λ

−1

−Rnλ
−1 − 1

2 λ−2 + RnQn−1

) (66)



Hamiltonian structure of discrete soliton systems 7237

satisfying

M ′[X] = (EN)M − MN. (67)

Next, in the case of Y �= 0, taking α = −2, a0 = d0 = 0 and (Bn, Cn)
T = λ−1(b0, c0)

T

(b0 and c0 are both independent of λ) in equation (61) we find(
Bn

Cn

)
= L−1

2 Y X = L̂Y

where the recursion operator L̂ = L1L
−1
2 is described by

L̂ =
(

E−1 0
0 E

)
−
(−Qn

RnE

)
(E − 1)−1(RnE

−1,QnE)

+ µn

(
Qn−1

−ERn

)
(E − 1)−1(Rn,Qn)

1

µn

. (68)

It is easy to check N |u=0 = 0 and X|u=0 = 0 if Y ∈ V2. In addition, similar to the discussion of
the Toda lattice, one can find that equation (67) only admits zero solutions in V2 and Q(0−)

2 (λ)

as N |u=0 = 0.
So, in the light of theorem 1, we have the isospectral evolution equations

unt = K̂
(l)

(u(t, n)) = L̂lK̂
(0)

(u(t, n)) l = 0, 1, . . . (69)

and the recursion operator L̂ is a strong and hereditary symmetry for the every member of
equation (69).

On the other hand, setting α = 2 in equation (61), one can find that the linear problem
pair (58) also satisfies the conditions of theorem 1 on the spaces V2 and Q(0+)

2 (λ). In this case,
another hierarchy is obtained

unt = K̃
(l)

(u(t, n)) = L̃lK̃
(0)

(u(t, n)) = L̃lµn

(
Qn

−Rn−1

)
l = 0, 1, . . . (70)

where the recursion operator L̃, also a strong and hereditary symmetry for equation (70), is
defined by

L̃ = L2L
−1
1 =

(
E 0
0 E−1

)
+

(−QnE

Rn

)
(E − 1)−1(RnE,QnE

−1)

+ µn

(−EQn

Rn−1

)
(E − 1)−1(Rn,Qn)

1

µn

. (71)

Taking

K(0)(u(t, n)) =
(

Qn

−Rn

)
(72)

and noting that L̂−1 = L̃ and

L̂K̃
(0) = L̃K̂

(0) = K(0)

we can combine equations (69) and (70):

unt = K(l)(u(t, n)) = LlK(0)(u(t, n)) L = L̂, l ∈ Z. (73)

Now, we factorize L into

L = θJ (74)
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where

θ = µn

(
0 1

−1 0

)
and

J = 1

µn

(
0 E

E−1 0

)
+

1

µn

(
RnE

Qn

)
(E − 1)−1(RnE

−1,QnE)

+

(
ERn

Qn−1

)
(E − 1)−1(Rn,Qn)

1

µn

are both skew-symmetric. With this in mind, we can rewrite the hierarchy (73) as

unt = θf (l)(u(t, n)) = θL∗l
f (0)(u(t, n)) f (0) = 1

µn

(
Rn+1

Qn−1

)
l ∈ Z. (75)

Obviously, every equation in the hierarchy (73) can act as the role of ‘the first equation’.

But here, for convenience, unt = K(1) = K̂
(0) = θf (1) may be more suitable because it is

easy to find from equation (66) that f (1) = (Rn+1,Qn−1)
T and to verify f (1)′ = f (1)′∗. So,

equation (74) is an implectic-symplectic factorization, every equation in the hierarchy (73) is
completely integrable in the Liouville sense and the Hamiltonian structure is

unt = θ
δH (l)

δu
= θL∗ δH (l−1)

δu
= · · · = θL∗l δH

(0)

δu
= θL∗l

f (0)(u(t, n)) l ∈ Z. (76)

According to formula (29), we write three of the conserved quantities H(l):

H(−1)(u(t, n)) = 1

2

+∞∑
n=−∞

(QnRn−1 + Qn+1Rn)

H (0)(u(t, n)) = −
+∞∑

n=−∞
ln(1 − QnRn)

H (1)(u(t, n)) = 1

2

+∞∑
n=−∞

(Qn−1Rn + QnRn+1).

5.4. A new lattice

From the following linear problem pair

Eφ = Mφ M =
 0 1 0

vn pn + λ 1
wn 0 0

 un =
 pn

vn

ln wn

 φ =
φ1

φ2

φ3


φt = Nφ N =

An Bn Cn

Dn En Fn

Gn Hn In


(77)

we can derive a new lattice which we call the B–M(II) lattice [20]. Along the lines of the
previous discussion, it is not difficult to find that equation (77) satisfies the conditions of
theorems 1 and 2. Here, we only list the main results.

The matrix equation

M ′[X − λY ] = (EN)M − MN (78)
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gives

An = λBn − pn−1Bn + En−1 Dn = vnBn+1 + wnCn+1

Fn = Bn+1 Gn = −λwn−1Cn−1 + wn−1Bn−1 − pn−1wn−1Cn−1

Hn = wn−1Cn−1 In = −λBn+1 − pnBn+1 − vnCn + En+1

and

X = λY + (L1 − λL2)

Bn

Cn

En

 (79)

where L1 and L2 are described as

L1 =
 EvnE − vn EwnE − E−1wn pn(E − 1)

vn(pn−1 − pnE) + wnE
2 − E−1wn E−1pnwn − pnwnE vn�

pn−1 − EpnE (1 − E)vn E2 − E−1

 (80)

L2 =
 0 0 1 − E

vn(E − 1) wnE − E−1wn 0
�E 0 0

 . (81)

The isospectral hierarchy is

unt = K(l)(u) = LlK(0)(u) l = 0, 1, . . . (82)

in which the recursion operator L = L1L
−1
2 = (Lij )3×3 and

L11 = −pn L12 = (EwnE − E−1wn)(wnE − E−1wn)
−1

L13 = (Evn − vnE
−1)�−1 − (EwnE − E−1wn)(wnE − E−1wn)

−1vn(E + 1)−1

L21 = −vn(1 + E−1) L22 = (E−1pnwn − pnwnE)(wnE − E−1wn)
−1

L23 = [vn(E
−1 − 1)pn + wnE − E−1wnE

−1]�−1

− (E−1pnwn − pnwnE)(wnE − E−1wn)
−1vn(E + 1)−1

L31 = −(E + 1 + E−1) L32 = (1 − E)vn(wnE − E−1wn)
−1

L33 = −�pn�
−1 − (1 − E)vn(wnE − E−1wn)

−1vn(E + 1)−1.

The first equation in (82) is

unt = K(0) =
 vn+1 − vn

vn(pn−1 − pn) + wn − wn−1

pn−1 − pn+1

 . (83)

We can decompose L into

L = θJ (84)

where

θ =
 0 (1 − E)vn −�

vn(E
−1 − 1) E−1wn − wnE 0
−� 0 0


J = (Jij )3×3 and

J11 = �−1(E + 1 + E−1) J12 = (E−1 + 1)−1vn(wnE − E−1wn)
−1

J13 = pn�
−1 − (E−1 + 1)−1vn(wnE − E−1wn)

−1vn(E + 1)−1

J21 = (wnE − E−1wn)
−1vn(E + 1)−1
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J22 = −(wnE − E−1wn)
−1(E−1pnwn − pnwnE)(wnE − E−1wn)

−1

+ (wnE − E−1wn)
−1vn(E

−1 − 1)�−1(E − 1)vn(wnE − E−1wn)
−1

J23 = (wnE − E−1wn)
−1(wnE − E−1wnE

−1)�−1

+ (wnE − E−1wn)
−1(E−1pnwn − pnwnE)(wnE − E−1wn)

−1vn(E + 1)−1

− (wnE − E−1wn)
−1vn(E

−1 − 1)

× �−1(E − 1)vn(wnE − E−1wn)
−1vn(E + 1)−1

J31 = �−1pn − (E−1 + 1)−1vn(wnE − E−1wn)
−1vn(E + 1)−1

J32 = �−1(E−1wn − EwnE)(wnE − E−1wn)
−1

+ (E−1 + 1)−1vn(wnE − E−1wn)
−1(E−1pnwn − pnwnE)(wnE − E−1wn)

−1

− (E−1 + 1)−1vn(wnE − E−1wn)
−1vn(E

−1 − 1)

× �−1(E − 1)vn(wnE − E−1wn)
−1

J33 = −�−1(Evn − vnE
−1)�−1

+ �−1(EwnE − E−1wn)(wnE − E−1wn)
−1vn(E + 1)−1

+ (E−1 + 1)−1vn(wnE − E−1wn)
−1(wnE − E−1wnE

−1)�−1

+ (E−1 + 1)−1vn(wnE − E−1wn)
−1(E−1pnwn − pnwnE)

× (wnE − E−1wn)
−1vn(E + 1)−1

+ (E−1 + 1)−1vn(wnE − E−1wn)
−1vn(E

−1 − 1)

× �−1(E − 1)vn(wnE − E−1wn)
−1vn(E + 1)−1.

Equation (83) can be written in the form

unt = θf (0)(u) f (0) = (pn,−1, 0)T f (0)′ = f (0)′∗.

So, equation (84) is an implectic-symplectic factorization, every equation in the hierarchy (82)
is completely integrable in the Liouville sense and the Hamiltonian structure is

unt = θ
δH (l)

δu
= θL∗ δH (l−1)

δu
= · · · = θL∗l δH

(0)

δu
= θL∗l

f (0)(u) l = 0, 1, . . . . (85)

It is not difficult to obtain the first conserved quantity

H(0)(u) =
+∞∑

n=−∞

(
1

2
p2

n − vn

)
.

6. Conclusions

We have described a method for constructing the Hamiltonian structures of isospectral
evolution equations using the related recursion operator. This method allows us, in the same
procedure, to obtain, directly from the discrete Lax pair, the isospectral hierarchy, the recursion
operator (which is a strong and hereditary symmetry of the flows), the (multi-)Hamiltonian
structures and the Liouville complete integrability of the evolution equations. Furthermore,
this method can certainly be applied to continuous soliton systems.
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